Rethinking Tools for the Morphosyntactic Analysis of Underdocumented Languages

Sara Court¹ Maria Copot²

¹The Ohio State University ²Université Paris Cité, LLF, CNRS

Collaboration with...

Noah Diewald

Stephanie Antetomaso

Micha Elsner

• A workflow for morphosyntactic annotation and analysis of underdocumented languages.

- A workflow for morphosyntactic annotation and analysis of underdocumented languages.
 - Dealing with data scarcity through heavy use of ML, NLP and human-in-the-loop methods.

- A workflow for morphosyntactic annotation and analysis of underdocumented languages.
 - Dealing with data scarcity through heavy use of ML, NLP and human-in-the-loop methods.
 - Different theoretical framework from previous tools.

- A workflow for morphosyntactic annotation and analysis of underdocumented languages.
 - Dealing with data scarcity through heavy use of ML, NLP and human-in-the-loop methods.
 - Different theoretical framework from previous tools.
 - Designed to increase **community engagement** with linguistic fieldwork.

• The problem

- Fieldwork on underdocumented languages challenges and stakeholders
- Morphosyntactic description and analysis

• The problem

- Fieldwork on underdocumented languages challenges and stakeholders
- Morphosyntactic description and analysis
- The solution
 - The theory: Word-and-Paradigm morphology
 - The implementation: software and piloting

• The problem

- Fieldwork on underdocumented languages challenges and stakeholders
- Morphosyntactic description and analysis
- The solution
 - The theory: Word-and-Paradigm morphology
 - The implementation: software and piloting
- What's next?

The problem

• **50-90%** of world's languages estimated to be **severely endangered or dead** by 2100 (Austin & Sallabank, 2011)

- **50-90%** of world's languages estimated to be **severely endangered or dead** by 2100 (Austin & Sallabank, 2011)
- Communities **shift** to speaking majority languages
 - out of stigmatisation
 - as a means of seeking out opportunities

- Affected communities are losing part of their identity
- Humanity is losing access to knowledge
- Researchers are experiencing artificially reduced variation in the object of study

Bridging the divide between researchers and community

• A growing trend to have **speakers** take an **active role** in fieldwork.

- A growing trend to have **speakers** take an **active role** in fieldwork.
- Positive because:
 - The speaker is **aware of the community's wants and needs** fieldwork can be steered to target them.

- A growing trend to have **speakers** take an **active role** in fieldwork.
- Positive because:
 - The speaker is **aware of the community's wants and needs** fieldwork can be steered to target them.
 - **Diminishes power differential** between the researcher and the community, making fieldwork more ethical.

- A growing trend to have **speakers** take an **active role** in fieldwork.
- Positive because:
 - The speaker is **aware of the community's wants and needs** fieldwork can be steered to target them.
 - **Diminishes power differential** between the researcher and the community, making fieldwork more ethical.
 - The speaker has **intuitive knowledge** of the object of study, narrowing the hypothesis space.

- A growing trend to have **speakers** take an **active role** in fieldwork.
- Positive because:
 - The speaker is **aware of the community's wants and needs** fieldwork can be steered to target them.
 - **Diminishes power differential** between the researcher and the community, making fieldwork more ethical.
 - The speaker has **intuitive knowledge** of the object of study, narrowing the hypothesis space.
- Common tasks:
 - Collect raw data (recordings of their community, writing up stories)
 - Data processing and analysis

 Collecting raw data requires mastering recording equipment/digitising notes, which may already be a challenge

- Collecting raw data requires mastering recording equipment/digitising notes, which may already be a challenge
- The real **bottleneck** is involvement in **data processing and analysis**
 - Technical barrier to use existing software
 - Need for linguistic training for e.g. applying morphological labels

Documenting and analysing morphosyntactic structure

1. Eliciting basic vocabulary

squirrels

squids

cats

Documenting and analysing morphosyntactic structure

1. Eliciting basic vocabulary

squirrels

squids

cats

2. Understanding the meaning of recurrent substrings

Xs = X.PLURAL

Documenting and analysing morphosyntactic structure

1. Eliciting basic vocabulary

squirrels

squids

cats

2. Understanding the meaning of recurrent substrings

Xs = X.plural

Morphosyntactic analysis is

- a crucial part of describing the linguistic system
- the basis for glossing a way to convey linguistic structure for other purposes

Tricky for understudied languages

Tricky for understudied languages

- Theoretical issues
 - Early commitment to an analysis
 - Assumption that all morphological patterns are easily described in concatenative terms

Tricky for understudied languages

- Theoretical issues
 - Early commitment to an analysis
 - Assumption that all morphological patterns are easily described in concatenative terms
- Practical issues
 - Suboptimal use of human time
 - Requires linguistic training

• Excel is a popular choice - a dire situation

Cour	ier New	- 12 -	B / ∐ ≡	: = = 🖂 🤫	%	, *********	•	3 - A -		
9	Ele Ed	it yew Insert	Format Tools	Data Window H	de	Adobe PDF			Type a quest	ion for help 6
		A 1/4 A 19	63 X 05 99			Q. Σ - 01 - 1 - 10	10	05 - 0		
	-									
-		a • a 1 • •	S 3 1 14			Egd Review 📑 : 🏊 🕰	9 2			
-	E16	- f~ !C	Sypste_d	-						
	Α	C	U	E	н		J	K	L	4
-		Deseda	iema	MSD	8/770	Razvezano	0	g lev konteks	r Deseda	desni konteksi
4		CUIV/2								
4	2	spix								
4	0	<s></s>	Class free							
4	4	Slavko	Slavko	Simei	2/3	toski ednina imenovalnik				
4	0	Dragovan	Dragovan	Pkomein	2	a imenovalnik -določnost				
	0			i som er						
	6	zupan	zupan	Some1	1/2	hoški ednina imenovalnik				
	8	obcine	obcina	Sozer	3/5	ne żeński ednina rodiinik				
	9	меніка	мешка	Sizei	1/2	anski ednina imenovalnik				
	10									
2	11	Se	se	L	1	Clenek				
	12	nikoli	nikoli	Rso	1/7	Prislov splošni osnovnik				
	13	me	jaz	Zop-etd-	3	*naslonka samostalniški				
	14	ni	biti	Gvpstec	•	ijik tretja odnina zanikani		jčine Metlika : Še nikoli m	e ni	bilo tako strah po
	15	bilo	biti	Gvdr-est	2	njik ednina srednji tvomik		ne Metlika : Se nikoli me r	i bilo	tako strah podpis
	16	tako	tako	Rso	3/7	Prislov splošni osnovnik				
1	17	strah	strah	Somei	2/3	toški ednina imenovalnik				
T	18	podpisati	podpisati	Gpn	1	enski nedoločnik dovršni		nikoli me ni bilo tako stra	h podpisat	kakšne pogodbe
	19	kakšne	kakšen	Zv-zer	6/8	dnina rodilnik pridevniški				
	20	pogodbe	pogodba	Sozer	3	ne ženski ednina rodinik				
	21	kot	kot	Dpei	6/8	g enostaven imenovalnik				
	22	prav	prav	Rso	4	Prialov apložni oanovnik				
	23	pogodbo	pogodba	Sozet	2	ne ženski ednina tožilnik				
	24	za	za	Dpet	2/3	redlog enostaven tožinik				
	25	vrtino	vrtina	Sozet	2	ne ženski ednina tožinik				
	26									
8	27	<s></s>								
	28	Podpisuješ	podpisovat	Gppsden	1	ina nezanikari nedovršni			Podpisuje	šnekaj , za kar de
	29	nekaj	nekaj	Zntset	2/3	na tožinik samostalniški				
ð.	30									

Existing software for annotation

- Excel is a popular choice
- FLEx: proprietary software built and owned by SIL
 - Automates some parsing and tagging, links cultural/semantic information to annotated corpora, can extract concordances

1. Requires non-trivial ease with technology

• ...you are absolutely **overestimating the technological ability** of researchers, let alone of speakers.

- 1. Requires non-trivial technological ability
- Researchers often want to use the software in ways it was not built for
 - Multilingual/multimodal/multispeaker data

- 1. Requires non-trivial technological ability
- Researchers often want to use the software in ways it was not built for
 - Multilingual/multimodal/multispeaker data
 - Non-concatenative morphology

- 1. Requires non-trivial technological ability
- Researchers often want to use the software in ways it was not built for
 - Multilingual/multimodal/multispeaker data
 - Non-concatenative morphology
 - Templatic morphology:

k-t-b katabtu aktubu kātibun WRITE *I wrote I write he/she who writes* All forms must be entered as "variants" - can't describe systematic relationships

- 1. Requires non-trivial technological ability
- Researchers often want to use the software in ways it was not built for
 - Multilingual/multimodal/multispeaker data
 - Non-concatenative morphology
 - Templatic morphology:

k-t-b katabtu aktubu kātibun WRITE *I wrote I write he/she who writes* All forms must be entered as "variants" - can't describe systematic relationships

• Ablaut:

mice-Ø mouse-PL

- 1. Requires non-trivial technological ability
- Researchers often want to use the software in ways it was not built for
 - Multilingual/multimodal/multispeaker data
 - Non-concatenative morphology
 - Templatic morphology:

k-t-b katabtu aktubu kātibun WRITE *I wrote I write he/she who writes* All forms must be entered as "variants" - can't describe systematic relationships

• Ablaut:

mice-Ø

mouse-PL

Learning and creating these workarounds requires **time and knowledge**.

- 1. Requires non-trivial technological ability
- Researchers often want to use the software in ways it was not built for
 - Multilingual/multimodal/multispeaker data
 - Non-concatenative morphology
 - Templatic morphology:

k-t-b katabtu aktubu kātibun WRITE *I wrote I write he/she who writes* All forms must be entered as "variants" - can't describe systematic relationships

• Ablaut:

mice-Ø

mouse-PL

Learning and creating these workarounds requires **time and knowledge**.

Often relies on **exporting and re-importing** to Python, ELAN, LaTeX, raising the technical barrier 11
- 1. Requires non-trivial technological ability
- Researchers often want to use the software in ways it was not built for
- **3.** Closed source proprietary software: technically capable people can't implement or share improvements.
 - Particularly regrettable: hard to take advantage of NLP and ML technology built for aiding work on underdescribed languages.

The idea behind the solution

Word-and-Paradigm Morphology

• A more **intuitive** annotation process and software interface, allowing for increased community involvement

- Word-and-Paradigm Morphology
 - A more **intuitive** annotation process and software interface, allowing for increased community involvement
- Computational methods and machine learning
 - Automating the initial steps of analysis
 - Suggesting most informative data points to analyse next
 - Automatically extending the annotation and analysis to new data

- Word-and-Paradigm Morphology
 - A more **intuitive** annotation process and software interface, allowing for increased community involvement
- Computational methods and machine learning
 - Automating the initial steps of analysis
 - Suggesting most informative data points to analyse next
 - Automatically extending the annotation and analysis to new data
- Software that is **modular and open source**

Morphemic approaches to morphology

• Glossing and traditional morphosyntactic analysis are based on a **morphemic conception** of language

Morphemic approaches to morphology

- Glossing and traditional morphosyntactic analysis are based on a **morphemic conception** of language
 - Morphology is about carving words up
 - Describing a language's morphology amounts to making an **inventory** of its FORM = MEANING pairings.

Morphemic approaches to morphology

- Glossing and traditional morphosyntactic analysis are based on a **morphemic conception** of language
 - Morphology is about carving words up
 - Describing a language's morphology amounts to making an **inventory** of its FORM = MEANING pairings.

• For several reasons, these reductionist approaches are **empirically inadequate**

- For several reasons, these reductionist approaches are **empirically inadequate**
 - Not always possible or easy to establish morpheme boundaries:

driv-er? drive-er? drive-r?

- For several reasons, these reductionist approaches are **empirically inadequate**
 - Not always possible or easy to establish morpheme boundaries:

driv-er? drive-er? drive-r?

• Some bits of form have **no meaning**:

natur-al sens-<u>u</u>-al, fact-<u>u</u>-al

- For several reasons, these reductionist approaches are **empirically inadequate**
 - Not always possible or easy to establish morpheme boundaries:

driv-er? drive-er? drive-r?

• Some bits of form have **no meaning**:

natur-al sens-<u>u</u>-al, fact-<u>u</u>-al

• Some bits of meaning have **no form attached**:

sheep (sg) vs sheep (pl)

- For several reasons, these reductionist approaches are **empirically inadequate**
 - Not always possible or easy to establish morpheme boundaries:

driv-er? drive-er? drive-r?

• Some bits of form have **no meaning**:

natur-al sens-<u>u</u>-al, fact-<u>u</u>-al

• Some bits of meaning have **no form attached**:

sheep (sg) vs sheep (pl)

• The whole is often more than the sum of its parts:

 $glasses \neq glass+PLURAL$

- For several reasons, these reductionist approaches are **empirically inadequate**
 - Not always possible or easy to establish morpheme boundaries:

driv-er? drive-er? drive-r?

• Some bits of form have **no meaning**:

natur-al sens-<u>u</u>-al, fact-<u>u</u>-al

• Some bits of meaning have no form attached:

sheep (sg) vs sheep (pl)

• The whole is often more than the sum of its parts:

 $glasses \neq glass + plural$

• Word-based approaches to morphology see the word as the smallest unit of meaning, rather than the morpheme, for the reasons above.

Define a word's meaning by the **place it occupies in the system**, relative to other words.

Morphology is about establishing **parallel analogical relationships between words**, and looking at the system as a whole.

Collect sets with parallel relationships of form and meaning

sink ~ sunk ring ~ rung *silk ~ *sulk

Collect sets with parallel relationships of form and meaning

sink ~ sunk ring ~ rung *silk ~ *sulk

These relationships can span all the lexicon

$$\label{eq:sink} \begin{split} \mbox{sink} &\sim \mbox{sunk} \sim \mbox{sinkable} \sim ... \\ \mbox{ring} &\sim \mbox{rung} \sim \mbox{ringable} \sim ... \end{split}$$

Collect sets with parallel relationships of form and meaning

sink ~ sunk ring ~ rung *silk ~ *sulk

These relationships can span all the lexicon

 $\begin{array}{l} {\rm sink} \sim {\rm sunk} \sim {\rm sinkable} \sim ... \\ {\rm ring} \sim {\rm rung} \sim {\rm ringable} \sim ... \\ \end{array}$

Morphological families are built up and aligned, starting from pairwise relationships

Word and Paradigm morphology

• Establishing parallel relationships of form and meaning between words

- The word is the smallest unit
 - Defined by its place in a system of contrasts, not by its component parts

Word and Paradigm morphology

• Establishing parallel relationships of form and meaning between words

• The word is the smallest unit

- Defined by its place in a system of contrasts, not by its component parts
- Concepts like **paradigm cell** or **lexeme** are emergent
 - The result of establishing contrasts and similarities between words along different dimensions

The goal

• Computational automation of the initial steps of the analysis

- Computational **automation of the initial steps** of the analysis
- The annotator corrects the initial analysis
 - Simple task: same or different?

- Computational **automation of the initial steps** of the analysis
- The annotator corrects the initial analysis
 - Simple task: same or different?
- Active learning
 - Updates the analysis after each annotator correction
 - Directs the annotator's attention to the most informative data points

The workflow

- Corpus of collected texts
 - + list of target lemmas
 - + unsupervised model (Jin et al. 2020)
 - = initial unlabeled paradigms

- Corpus of collected texts
 - + list of target lemmas
 - + unsupervised model (Jin et al. 2020)
 - = initial unlabeled paradigms
- System searches a documentary corpus to identify related forms for each lexeme and group surface forms into paradigms

	Cell					
Lexeme	1	2	3	4	5	6
HEAR	hear	heard	-	hearing	heart	-
HELP	help	-	helped	helping	-	helps

Unsupervised Morphological Paradigm Completion (Jin et al., 2020)

• Official baseline for **SIGMORPHON 2020** shared task (Task 2)

Unsupervised Morphological Paradigm Completion (Jin et al., 2020)

- Official baseline for **SIGMORPHON 2020** shared task (Task 2)
- Uses **LONGEST COMMON SUBSTRING (LCS)** to identify paradigm candidates for each lemma input

Unsupervised Morphological Paradigm Completion (Jin et al., 2020)

- Official baseline for **SIGMORPHON 2020** shared task (Task 2)
- Uses LONGEST COMMON SUBSTRING (LCS) to identify paradigm candidates for each lemma input
- Computes **EDIT TREES** to identify recurrent changes in surface forms across paradigms and defines paradigm cells accordingly

Unsupervised Morphological Paradigm Completion (Jin et al., 2020)

- Official baseline for **SIGMORPHON 2020** shared task (Task 2)
- Uses LONGEST COMMON SUBSTRING (LCS) to identify paradigm candidates for each lemma input
- Computes **EDIT TREES** to identify recurrent changes in surface forms across paradigms and defines paradigm cells accordingly

Figure 2: Visualization of the EDIT TREE constructed from *najtrudniejszy* to *trudny* (Chrupała, 2008).

Figure 3: Visualization of the EDIT TREES representing (a) work \mapsto worked and (b) continue \mapsto continued.

- 1. Analyzes inflection as distinct from derivation
 - Inflection: dance (V.PRS) \sim danced (V.PST)
 - **Derivation:** dance (V.PRS) \sim dancer (N.AGENT)

- 1. Analyzes inflection as distinct from derivation
 - Inflection: dance (V.PRS) \sim danced (V.PST)
 - **Derivation:** dance (V.PRS) \sim dancer (N.AGENT)
- 2. Assumes exactly one form per paradigm cell
 - But variation is common across languages! e.g., English *dreamed/dreamt*

- 1. Analyzes inflection as distinct from derivation
 - Inflection: dance (V.PRS) \sim danced (V.PST)
 - **Derivation:** dance (V.PRS) \sim dancer (N.AGENT)
- 2. Assumes exactly one form per paradigm cell
 - But variation is common across languages! e.g., English *dreamed/dreamt*
- 3. Assumes exactly one paradigm cell per form
 - This is also often not the case! e.g., English *read* can indicate 1SG.PRS,1SG.PST, 2SG.PRS, 1PL.PRS...
The model makes a number of simplifying assumptions:

- 1. Analyzes inflection as distinct from derivation
 - Inflection: dance (V.PRS) \sim danced (V.PST)
 - **Derivation:** dance (V.PRS) \sim dancer (N.AGENT)
- 2. Assumes exactly one form per paradigm cell
 - But variation is common across languages! e.g., English *dreamed/dreamt*
- 3. Assumes exactly one paradigm cell per form
 - This is also often not the case!

e.g., English read can indicate 1SG.PRS,1SG.PST, 2SG.PRS, 1PL.PRS...

4. Assumes concatenative relationships and consistent affix ordering

The model's output:

			С	ell		
Lexeme	1	2	3	4	5	6
HEAR	hear	heard	-	hearing	heart	-
HELP	help	-	helped	helping	-	helps

The model's output:

Cell 1 2 3 5 Lexeme 4 6 heard hearing hear heart HEAR -_ help helped helping helps HELP --

. . . it's a start! Humans can help :)

Step 2: Same or different? (Lexemes)

- Automatically extract examples of each **form in context** from the corpus
- The annotator marks items that don't belong with the others

File								
Lexicon Analogies Paradigms Texts								
Lexemes	Surface Forms	Concordances						
DANCE DRIVE LIVE HEAR WORK	HEAR HEARS HEARD HEARING	 you're still going to hear them. She thought she could hear Gomez laughing. signalling of problems of hearing and understanding. gray marble mausoleum at the heart of the city. gray marble mausoleum at the heart of the city. 						

Step 3: Same or different? (Analogies)

• Pairwise analogy groups forms instantiating the same paradigm cell

File								
Lexicon Analogies Paradigms Texts								
Analogies	Concordances							
		Х	Xing					
X ~ Xment X ~ Xer	ø	We publish these	Time for publishing					
X ~ Xing X ~ Xed	0	If we learn how	Second language learning is					
X ~ X	0	We go regularly to	She's not going to like					

• The annotator's task is the same: mark pairs that don't belong, and confirm those that do

The result: Unlabeled paradigms

Experiments and results

- Universal Dependencies datasets for English and Croatian provide a gold standard for evaluation
- Annotators: 4 linguists (2 per language), fluent English speakers
 - English: upper estimate of model + annotator performance
 - Croatian: unfamiliar language
- 30 minutes per task: lexeme groupings + cell groupings

Lexeme	
--------	--

Cell

	Acc.	Marked	Corr.		Acc.	Marked	Corr.
Englis	h			Englis	h		
Base	81%	-	-	Base	67%	-	-
A1	84%	58	50	A1	97%	129	120
A2	83%	43	33	A2	94%	119	108
Croati	an			Croati	an		
Base	66%	-	-	Base	90%	-	-
A3	67%	19	19	A3	90%	8	-1
A4	66%	12	12	A4	90%	28	16

Lexe	eme
------	-----

Cell

	Acc.	Marked	Corr.		Acc.	Marked	Corr.
Englis	h			Englis	h		
Base	81%	-	-	Base	67%	-	-
A1	84%	58	50	A1	97%	129	120
A2	83%	43	33	A2	94%	119	108
Croati	an			Croatia	an		
Base	66%	-	-	Base	90%	-	-
A3	67%	19	19	A3	90%	8	-1
A4	66%	12	12	A4	90%	28	16

Lexeme	
--------	--

Cell

	Acc.	Marked	Corr.		Acc.	Marked	Corr.
Englis	h			Englis	h		
Base	81%	-	-	Base	67%	-	-
A1	84%	58	50	A1	97%	129	120
A2	83%	43	33	A2	94%	119	108
Croati	an			Croatia	an		
Base	66%	-	-	Base	90%	-	-
A3	67%	19	19	A3	90%	8	-1
A4	66%	12	12	A4	90%	28	16

Case Study: Wao Terero

Wao Terero provides a demonstration of this workflow in the field.

- Linguistic isolate spoken in Ecuadorian Amazon
 - Estimated 1,200-3,000 speakers
 - No standard orthography
- Collaboration with native speakers (Spanish-Wao bilinguals)

- Two **native speaker consultants** from the Wao community of Geyepade served as annotators.
 - Neither consultant had taken a course in linguistics

- Two **native speaker consultants** from the Wao community of Geyepade served as annotators.
 - Neither consultant had taken a course in linguistics
- 10 minutes of training, with Spanish verbal paradigms
 - annotate as many items (lexemes and paradigm cells) as possible within **1 hour**

- Two **native speaker consultants** from the Wao community of Geyepade served as annotators.
 - Neither consultant had taken a course in linguistics
- 10 minutes of training, with Spanish verbal paradigms
 - annotate as many items (lexemes and paradigm cells) as possible within **1 hour**
- Annotators found the task **understandable** and **interesting**, with high inter-annotator agreement across annotated examples

Copot et al. (2022)

A Word-and-Paradigm Workflow for Fieldwork Annotation

In Development...

Implementing the Full Workflow

Ranking + Active Learning

- Warm start a supervised classifier using the unsupervised model's output as **silver data**
- System uses annotator's corrections for active learning

File									
Lexicon Analogies Paradigms Texts									
Lexemes	Surface Forms	Concordances							
DANCE DRIVE LIVE HEAR WORK	HEAR HEARS HEARD HEARING HEART	 you're still going to hear them. She thought she could hear Gomez laughing. signalling of problems of hearing and understanding. gray marble mausoleum at the heart of the city. 							

• Items are reordered in real time for efficient use of annotator time

Ranking + Active Learning

- Analysis is pairwise-relational over sets of formal, structural, and semantic properties
- Lexeme and cell groupings **emerge** from the existence of shared relationships

File								
Lexicon Analogies Parad	digms	Texts						
Analogies		Concordances						
		Х	Xing					
X ~ Xment X ~ Xer	ø	We publish these	Time for publishing					
X ~ Xing X ~ Xed	0	If we learn how	Second language learning is					
X ~ X	0	We go regularly to	She's not going to like					

Improving Unsupervised Paradigm Discovery

- Current methods almost exclusively rely on formal relationships
 - We can **incorporate context features** from the corpus to bolster **semantic** representations

Improving Unsupervised Paradigm Discovery

- Current methods almost exclusively rely on **formal** relationships
 - We can **incorporate context features** from the corpus to bolster **semantic** representations
- Still highly biased towards concatenative relationships
 - Can we leverage initial output to identify additional non-concatenative alternations?

Improving Unsupervised Paradigm Discovery

- Current methods almost exclusively rely on **formal** relationships
 - We can **incorporate context features** from the corpus to bolster **semantic** representations
- Still highly biased towards concatenative relationships
 - Can we leverage initial output to identify additional non-concatenative alternations?
- Want to incorporate derivational and agglutinative relationships to establish networks of morphological families
 - **Derivational:** build \sim rebuild; build \sim builder; rebuild \sim rebuilder
 - Agglutinative: epäjärjestelmällistyttämättömyydellänsäkäänköhän "I wonder if – even with his/her quality of not having been made unsystematized"

Conclusion

- Intuitive for untrained consultants
 - Increases community participation

- Intuitive for untrained consultants
 - Increases community participation
- Defers difficult decisions about segmentation and labeling
 - Paradigmatic analysis of morphological system as a whole

- Intuitive for untrained consultants
 - Increases community participation
- Defers difficult decisions about segmentation and labeling
 - Paradigmatic analysis of morphological system as a whole
- Modular architecture:
 - Future improvements in state of the art machine learning can immediately benefit annotator

- Intuitive for untrained consultants
 - Increases community participation
- Defers difficult decisions about segmentation and labeling
 - Paradigmatic analysis of morphological system as a whole
- Modular architecture:
 - Future improvements in state of the art machine learning can immediately benefit annotator
- Annotation output may be used for linguistic analysis as well as community resource development

Many thanks to our consultants, Flora and Alberto Boyotai! Thank you!