Networks and nondeterminism

Maria Copot Andrea D. Sims

The Ohio State University

- Mapping a lexeme to the inflectional form that realises a paradigmatic cell.
 - F(lexeme, cell) \rightarrow inflected form
 - F(bake, prs.3sg) \rightarrow bakes
- Nondeterminism of inflectional realisation arises when the function above does not yield a clear, unique output.

- The process underlying inflectional realisation is about the interaction of an input with the wider system it is part of
- Nondeterminism is predicted to arise where the lexicon enters high-entropy configurations.

Information theory and nondeterminism

• Information-theoretic approaches to the lexicon are able to quantify the uncertainty involved in the realisation of a lexeme in a cell

Lexeme	prs.3pl	prs.2pl	π_1	π_2	Freq	Surprisal	Entropy
BAVER	bav	bave	\checkmark		1	0	0
MORDRE	шэва	шэва <mark>е</mark>	\checkmark		T	0	0
PEINER	p <mark>ɛ</mark> n	pεn <mark>e</mark>	\checkmark	\checkmark	13	1.585	0.918
LEVER	l <mark>e</mark> v	l∂v <mark>e</mark>	\checkmark	\checkmark	23	0.585	0.918
MENER	m <mark>ɛ</mark> n	mən <mark>e</mark>	\checkmark	\checkmark	23	0.585	0.918

Entropy

- Entropy is an **average** of a transformed distribution of probabilities.
- Like all averages, it **masks** important things about the **underlying distribution**

Entropy

• Imagine a lexeme L that could take four patterns in cell C with different likelihoods:

А	В	С	D	Entropy
<u>1</u> 2	$\frac{1}{4}$	<u>1</u> 8	<u>1</u> 8	1.75
<u>1</u> 8	$\frac{1}{8}$	<u>3</u> 8	3	1.8

- Despite the **differences** in distribution...
 - The entropy values are very close
 - Disregard for which patterns are more similar

The importance of the underlying configuration in morphology

• Entropy of 0 (no uncertainty): a **strong implicative relationship** between two exponents, or a **default**?

 $H("I am" \rightarrow "he is")$ $H("I swim" \rightarrow "he swims")$

• Comparable **ambiguity** exist for cases of higher entropy.

The underlying configurations of nondeterminism

- We present a **configuration-forward** approach to the lexicon, rooted in **network theory**
- We focus on two network measures quantitative approach to outlining configurations predicted to yield inflectional nondeterminism
- Allows us to:
 - Make predictions about where speakers will behave nondeterministically and to what degree (work in progress!)
 - Query why nondeterminism occurs at a given locus
- **Proof of concept** of larger usefulness of networks to the study of the lexicon

A **network** is a mathematical structure characterised by

- nodes (objects)
- edges (connections)

An approach that centers **relationships between objects**.

- Networks have been used to model **system dynamics** in the physical, biological and social sciences
- Limited adoption in modeling of lexical relations
 - e.g. Pham & Baayen (2015), Brown & Hippisley (2012)¹, Beniamine, (2016)², Sims (2020).

¹Technically a tree ²Technically a lattice

The linguistic systems - French verbs and BCMS nouns

An International Space Station view of the systems

French

- A central cluster of microclasses.
- Most other classes are variations on the central cluster, characterised by the addition of unique exponents.

- No clearly defined central cluster, high interconnectedness
- Plenty of mixing and matching of exponents

Setting up a network

Transposing an inflected lexicon to a network

- 1. Start with phonemically transcribed inflected lexicon
- morphalign (Beniamine & Guzmán-Naranjo, 2020) to align inflected forms.
- setmorph (Carroll & Beniamine, submitted; Beniamine & Carroll, 2023) to segment inflected forms into smallest discriminative units (lexeme-internal comparisons)
- 4. Convert discriminative units into exponents:
 - combined exponents that were reliably adjacent
 - combine exponents for which a combined variant has been identified elsewhere in the system.
- 5. To capture **subexponent regularities**, the exponent string is segmented into **triphones**
- 6. The triphones are marked for the paradigmatic cell they occur in

Two types of nodes: lexemes and exponent triphones.

One-mode network

- Project the bipartite network to a **one-mode network** (only one type of node: lexemes).
- Two lexemes are connected by an edge if they share **at least one exponent triphone**.
- Each edge is weighted by how many exponent triphones they share.

We create **bipartite and one-mode** networks for the **French verbal system** (Vlexique 2.0, Beniamine et al. 2023) and the **BCMS nominal system** (UniMorph, Batsuren et al. 2022).

	French verbs	BCMS nouns
paradigm cells	52	12
unique lexemes	5.274	10.927
unique triphone + cell combinations	3.917	1.290
edges (bipartite)	605.896	202.999
edges (one mode)	13.865.187	56.057.017

- We can expect **nondeterminism** to show up in a network as
 - A node being pulled in multiple directions, multiple possible analogical patterns
 - e.g. overabundance (Thornton, 2011)
 - A node being peripheral to the network, no good analogical pattern
 - e.g. lexemes peripheral to the system, susceptible to regularisation
- We can quantify these properties for each node thanks to the measures of **BETWEENNESS CENTRALITY** and **CLOSENESS CENTRALITY**

Closeness centrality - odd exponents

- Closeness (Bavelas, 1950) is a function of the identity of exponents
 - Are a lexeme's exponents well integrated with the rest of the system?
 - How unique are a lexeme's exponents?

- The average shortest distance between node N and any other node
- Nodes low in closeness are **not well connected** to the rest of the system and are peripheral to it

Betweenness centrality - oddness of exponent pairing

- Betweenness (Gross & Yellen, 2006) is a function of the arrangement of exponents of a lexeme
 - Is the lexeme pairing up exponents in unusual ways?

- The **number of shortest paths** between any two nodes in the network that **pass through node N**.
- Nodes high in betweenness are bridges for navigating the system

- French:
 - defective lexemes (e.g. ACCROIRE 'make sb believe', QUÉRIR 'seek')
 - suppletive verbs (e.g. AVOIR 'to have', ÊTRE 'to be', SAVOIR 'to know')
 - verbs with very rare or unique exponents (e.g. FAIRE 'to do')
- BCMS:
 - pluralia tanta neuters (e.g. PLUĆA 'lungs')
 - nouns with unusual exponent(s) (e.g. OBA 'both', GEN.PL obaju)
 - collectives (e.g. DUGMAD 'buttons')

• French:

- Verbs that mix exponents from the first and second conjugation (e.g. ACCUEILLIR 'welcome')
- Third conjugation verbs with rare exponents that still take default exponents for part of their paradigm, making them a bridge between the third conjugation and the other two (e.g. VALOIR 'be worth', BOIRE 'drink')
- BCMS:
 - Large classes central to the system that mix exponents

Different types of items - why?

Square clustering

"The probability that my friends have common friends except me" - strength of joint probability of exponents.

Square clustering

The network has one square. The SC coefficient measures how many squares a node is part of, out of the total possible number. In this network:

PLONGER	1/2 = 0.5
MANGER	1/2 = 0.5
FINIR	0

Square clustering in French verbs and BCMS nouns

The two systems have very **different configurations**: in French, exponents have much higher **joint probability** than in BCMS.

- Lexemes high in betweenness centrality in BCMS come from large, frequent classes
 - Conceived of as core to the system.
- Because of low joint exponent probability overall, it is the lexemes **most prototypical of the system** that act as bridges between its different parts (unlike in French)
- Such lexemes have not been the focus of work on nondeterminism
 - perhaps because of their high type frequency?
 - Prediction to test: locus of nondeterminism.

- A network-based framing of the lexicon gives us the tools to think in relational terms about both local and global dynamics
- The framework comes with an extensive **quantitative toolkit** for studying systems, and the role of individual items within them.
- Network theory allows us to investigate the different configurations that lead to **nondeterminism** in the context of their **broader system**
- Exploratory step in **broader research programme**: many other possible applications of network theory to the lexicon, come talk to us!

If you are interested in exploring the graphs or the lexeme/exponent measures you can find them on OSF:

Appendix

Closeness distribution

Betweenness distribution

Form predictability as average surprisal i

- We want to derive a quantitative measure of how much confidence a speaker may have that they are producing the appropriate form for a given paradigm cell, given knowledge of the rest of the paradigm.
- This is clearly a variant of the Paradigm Cell Filling Problem Ackerman09,Ackerman13.

• We rely on a purely word-based approach to the PCFP of Bonami16, using Beniamine18's (Beniamine18) Qumin package for all computations.

For each pair of cells (c, c') in the paradigm:

1. Assign each pair to an alternation pattern, optimizing alignments between pairs of words.

Form predictability as average surprisal iii

	Lexeme	PRS.3PL	PRS.2PL	
	CROIRE BAVER LEVER MENER PEINER MORDRE	kชwa bav lɛv mɛn pɛn mɔʁd	kwaje bave ləve məne pɛne mɔʁde	⇒
Lexeme	prs.3pl	prs.2pl	Alternation	
BAVER PEINER MORDRE	ps <mark>n</mark> מאר שסד <mark>ק</mark>	шэк <mark>q</mark> е ре <mark>и</mark> е ра <mark>v</mark> е	$\pi_1 : _ \rightleftharpoons _$	e/X⁺ C_ #
LEVER MENER	ໄε <mark>v</mark> mεn	lə v e mə n e	$\pi_2 : _ _ \rightleftharpoons$	_ə_e/X ⁺ _C_#
CROIRE	kr <mark>wa</mark>	k wa je	$\pi_3: _ \rightleftharpoons _$	je/X+ wa _#

Lexeme	prs.3pl	prs.2pl	Alternation
BAVER	psn	bave	$\pi_1:_\rightleftharpoons_e/X^+C_\#$
PEINER	bɛn	pɛne	
MORDRE	mวҝd	mɔʁde	
LEVER	lεv	ləve	$\pi_2: _ \rightleftharpoons _ \operatorname{a_e}/X^+_C_\#$
MENER	mεn	məne	
CROIRE	квwa	kwaje	$\pi_3:_\rightleftharpoons_je/X^+wa_#$

2. Classify predictor cell shapes on the basis of which patterns they are compatible with.

Form predictability as average surprisal v

Lexeme	prs.3pl	PRS.2PL	π_1	π_2	π_3	Predictor shape
BAVER MORDRE	тэк <mark>q</mark> раv	mэrqe	✓ ✓			κ_1
PEINER LEVER MENER	pɛn lɛv mɛn	pɛne ləve məne	✓ ✓ ✓	✓ ✓ ✓		ĸ2
CROIRE	kr <mark>wa</mark>	kwaje			\checkmark	κ_3

⇒ Puts words from predictor cell c into classes $\kappa_1, \ldots, \kappa_m$ that share phonological properties relevant for determining what happens in cell c'.

Lexeme	prs.3pl	PRS.2PL	π_1	π_2	π_3	Predictor shape
BAVER MORDRE	mэrq pav	mэrqe	✓ ✓			κ_1
PEINER LEVER MENER	pεn lεv mεn	pɛne ləve məne	✓ ✓ ✓	✓ ✓ ✓		ĸ2
CROIRE	квwa	kwaje			\checkmark	κ_3

3. Compute the surprisal of the form found in cell *c*' given the form found in cell *c*:

$$S = -\log_2 P(\pi_i \mid \kappa_j)$$

Lexeme	prs.3pl	prs.2pl	Pattern	Class	р	S
BAVER MORDRE	тэв <mark>д</mark> ра <mark>л</mark>	mэrqe	π_1 π_1	$rac{\kappa_1}{\kappa_1}$	1 1	0 0
PEINER LEVER MENER	pɛn lɛv mɛn	pɛne ləve məne	$\pi_1 \\ \pi_2 \\ \pi_2$	$egin{array}{c} \kappa_2 \ \kappa_2 \ \kappa_2 \end{array}$	13 23 23	1.585 0.585 0.585
CROIRE	к <mark>вма</mark>	kwaje	π_3	ĸз	1	0

- **4.** Average over predictor cells *c* to get an overall estimation of how surprising *c*' is given the rest of the paradigm.
 - Ideally, this should be weighted by cell frequency.
 - But we do not have quality estimations of cell frequency, because of pervasive syncretism.
 - For lack of a better solution we use unweighted frequency.

Form predictability as local entropy

- Instead of asking how surprising the actual form is, we can ask how much uncertainty is associated with the distribution of possible forms.
- To that effect we can use the entropy of the distribution of patterns sharing a class, which we call local entropy. For class κ_i:

$$H = -\sum_{\pi \in \Pi} P(\pi \mid \kappa_j) \times \log_2 P(\pi \mid \kappa_j)$$

Lexeme	prs.3pl	PRS.2PL	π_1	π_2	π_3	р	S	Н
BAVER	ba <mark>∨</mark>	bave	\checkmark			1	0	0
MOURIR	ี่ mวห <mark>q</mark>	шэкде	\checkmark			1	0	0
PEINER	p <mark>εn</mark>	pɛne	\checkmark	\checkmark		13	1.585	0.918
LEVER	lεv	ləve	\checkmark	\checkmark		23	0.585	0.918
MENER	m <mark>ɛn</mark>	məne	\checkmark	\checkmark		23	0.585	0.918